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Abstract
We show that any first-order ordinary differential equation with a known Lie
point symmetry group can be discretized into a difference scheme with the
same symmetry group. In general, the lattices are not regular ones, but must
be adapted to the symmetries considered. The invariant difference schemes
can be so chosen that their solutions coincide exactly with those of the original
differential equation.

PACS numbers: 02.20.−a, 02.30.lk, 02.30.Ks

1. Introduction

The purpose of this paper is to analyse Lie point symmetries and to obtain the exact solutions
of first-order difference schemes. These are two-point schemes of the form

Ea(x, y, x+, y+) = 0 a = 1, 2 (1.1)∣∣∣∣∂(E1, E2)

∂(x+, y+)

∣∣∣∣ �= 0 (1.2)

where we use the notation x ≡ xn, x+ ≡ xn+1, y ≡ yn, y+ ≡ yn+1 for the independent and
dependent variables, evaluated at two different points. The two equations (1.1) define a
difference equation, as well as a lattice. The general solution of the scheme depends on two
constants and has the form

y = y(n, C1, C2) x = x(n, C1, C2). (1.3)

Equation (1.3) can also be rewritten as

y = y(x, C1, C2) x = x(n, C1, C2). (1.4)
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The formula for y can be interpreted as interpolating between the points of the lattice and
determining the solution y for all values of x.

A standard equally spaced lattice is given by a specific choice of one of the two
equations (1.1), namely, E2 = x+ − x − h = 0, where h is a constant (the lattice spacing) and
its solution is xn = nh + x0 (where x0 is one of the two integration constants of the scheme).

Instead of the variables x, y, x+, y+, we can use

x y h = x+ − x yx = y+ − y

x+ − x
. (1.5)

The continuous limit h → 0 of the scheme (1.1) is then obvious, namely, one of the equations
should turn into a first-order ordinary differential equation (ODE), the other into an identity
(like 0 = 0). We shall write the ODE as

E(x, y, y ′) = y ′ − F(x, y) = 0. (1.6)

The symmetries and solutions of the difference scheme (1.1) that we shall obtain below
will in the limit h → 0 turn into Lie point symmetries and solutions of the ODE (1.6). To
establish the connection, let us recall some well-known results on symmetries of first-order
ODEs [1].

The Lie point symmetry group of the ODE (1.6) is always infinite-dimensional [1]. Its
Lie algebra, the ‘symmetry algebra’, is realized by vector fields of the form

X = ξ(x, y)∂x + φ(x, y)∂y (1.7)

satisfying

pr X(E)|E=0 = 0. (1.8)

In (1.8), pr X is the first prolongation of X, i.e. [1]

pr X = ξ(x, y)∂x + φ(x, y)∂y + φx(x, y, y ′)∂y ′
(1.9)

φx = φx + (φy − ξx)y
′ − ξy(y

′)2

where the subscripts are partial derivatives. Equation (1.8) amounts to a single first-order
linear partial differential equation for the two functions ξ and φ and as such it has infinitely
many solutions. This is the reason why the Lie point symmetry of equation (1.6) is infinite-
dimensional [1]. In general, it may be difficult or impossible to find any explicit analytical
solution, as difficult as finding an integrating multiplier. However, if we find at least one
particular explicit solution of equation (1.8), we can obtain a one-dimensional subalgebra
of the symmetry algebra of equation (1.6). This is sufficient to integrate equation (1.6) in
quadratures.

All elementary methods of solving first-order ODEs amount to special cases of the above
procedure.

A different application of the vector field X and its prolongation (1.9) is to construct first-
order ODEs that are invariant under a given Lie group of local point transformations, namely,
those generated by the vector field X. In this case, the functions ξ(x, y), φ(x, y) and hence
also φx(x, y, y ′), are known. The invariant equation is obtained by solving the first-order
partial differential equation:

[ξ(x, y)∂x + φ(x, y)∂y + φx(x, y, y ′)∂y ′ ]E(x, y, y ′) = 0 (1.10)

for the function E(x, y, y ′). Solving by the method of characteristics, we obtain two
elementary invariants:

I1 = I1(x, y) I2 = I2(x, y, y ′)
∂I2

∂y ′ �= 0. (1.11)
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An invariant equation is given by any relation between I1 and I2, i.e.,

E(I1, I2) = 0
∂E

∂I2
�= 0. (1.12)

If we are given a two-dimensional Lie algebra of vector fields {X1, X2} and we require
invariance under the two-dimensional Lie group they generate, then two different possibilities
can occur. The first is that the two equations (1.10) (for X1 and X2, respectively) have a
common solution

I = I (x, y, y ′)
∂I

∂y ′ �= 0. (1.13)

The invariant ODE then is

F(I) = 0 (1.14)

where F is arbitrary. We say that equation (1.14) is ‘strongly invariant’ with respect to the
group generated by {X1, X2}. If no such invariant I (x, y, y ′) exists, then we look for an
invariant manifold and a ‘weakly invariant’ equation. This is obtained from the condition that
the two equations pr X1(E) = 0, pr X2(E) = 0 should be equivalent. This is a condition on
the matrix of coefficients, i.e.,

rank

(
ξ1 φ1 φx

1

ξ2 φ2 φx
2

)
= 1. (1.15)

This condition, together with, say, pr X1(E) = 0, provides the weakly invariant equation.
In section 2, we will adapt the above results to the case of the difference system (1.1) and

in sections 3–9 consider many examples. The examples will be difference analogues of ODEs
with known symmetry groups (linear equations, separable equations, etc).

In each case, we first present a one- or two-dimensional symmetry algebra of the ODE
and use it to solve the equation. We have not found these symmetry algebras in the literature,
but they are implicit in standard integration procedures (we have made them explicit). In each
case, we spell out the invariant difference schemes and choose one that has exactly the same
general solution as the ODE.

2. Lie point symmetries and first-order difference schemes

The point of view that we will be taking here is the same as in previous publications, e.g.
[2–12] and references therein. Namely, Lie point symmetries of difference equations will be
continuous point transformations (x, y) → (x̃, ỹ), taking solutions of the system (1.1) into
solutions of the same sysetm. They will be induced by a Lie algebra of the vector fields of
the same form (1.7) as for differential equations. The prolongation of the vector field will be
different. No derivatives figure in equation (1.1); instead we prolong to other points on the
lattice. In the case of the system (1.1), we have

prDX = ξ(x, y)∂x + φ(x, y)∂y + ξ(x+, y+)∂x+ + φ(x+, y+)∂y+ . (2.1)

The continuous limit (1.9) is recovered by putting

x+ = x + h y+ ≡ y(x+) = y(x) + hy ′(x) + · · · (2.2)

then, expanding into Taylor series

ξ(x+, y+) = ξ(x, y) + hξx(x, y) + hy ′ξy(x, y) + · · ·
(2.3)

φ(x+, y+) = φ(x, y) + hφx(x, y) + hy ′φy(x, y) + · · ·
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and acting with prDX on a function of x, y, h and yx (see equation (1.5)). We obtain

prDX(F(x, y, h, yx)) = {
ξ(x, y)∂x + φ(x, y)∂y + [φx + (φy − ξx)yx

− ξy(yx)
2]∂yx

}
F(x, y, h, yx) + O(h). (2.4)

Thus, we have

lim
h→0

prDX = pr X (2.5)

as required.
Using the prescription

prDX(Ea)|E1=E2=0 = 0 (2.6)

we can find the symmetries of a given system (1.1). Instead, we shall start from an ODE and
its known symmetries and construct the invariant difference scheme from the known vector
fields.

For a one-dimensional symmetry algebra, we find invariants by solving the partial
differential equation:[
ξ(x, y)∂x + φ(x, y)∂y + ξ(x+, y+)∂x+ + φ(x+, y+)∂y+

]
F(x, y, x+, y+) = 0 (2.7)

by the method of characteristics. The elementary invariants are

ID
1 = ID

1 (x, y) ID
2 = ID

2 (x+, y+) ID
3 = ID

3 (x, y, h, yx)
∂I3

∂yx

�= 0 (2.8)

with h and yx as in equation (1.5). Any two relations between expressions (2.8) will give an
invariant difference scheme, for instance

ID
3 = F

(
ID

1

)
ID

1 = ID
2 (2.9)

with F chosen to obtain the correct continuous limit (we will drop the superscript D below).
If we have a two-dimensional symmetry algebra, we will obtain two invariants. If one of

them is of the type I3 in (2.8), we again obtain a (strongly) invariant difference scheme. If not,
we must look for an invariant manifold, given in this case by the rank condition

rank

(
ξ1(x, y) φ1(x, y) ξ1(x+, y+) φ1(x+, y+)

ξ2(x, y) φ2(x, y) ξ2(x+, y+) φ2(x+, y+)

)
= 1. (2.10)

We will see below for specific examples that for each invariant ODE we obtain invariant
difference schemes with the same invariance group and the same general solution. Indeed,
our choice of the invariant difference schemes

Ea(I1, I2, I3) = 0 a = 1, 2 (2.11)

will be guided by two considerations:

(i) To obtain the original ODE in the continuous limit.
(ii) To obtain a difference scheme that has exactly the same general solution as the original

ODE (for any value of the lattice spacing h = x+ − x).

3. Linear equations

Let us consider the first-order linear inhomogeneous ODE

y ′ = a(x)y + b(x). (3.1)

For convenience, we redefine the given functions a(x) and b(x), putting a(x) ≡ A′(x), b(x) ≡
B ′(x) eA(x). Equation (3.1) and its general solution are then written as

y ′ = A′(x)y + B ′(x) eA(x) (3.2)

y(x) = (B(x) + k) eA(x) (3.3)

where k is the integration constant and the primes indicate x-derivatives.
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Equation (3.2) has a two-dimensional Lie point symmetry group, generated by the vector
fields

X1 = eA(x)∂y X2 = [y − B(x) eA(x)]∂y. (3.4)

Now let us look for a difference scheme invariant under the group generated by the Lie
algebra (3.4). The prolongations of X1 and X2 to the space {x, y, x+, y+} have only two
invariants x and x+. However, they do allow an invariant manifold, given by the condition
(2.10), which in this case reduces to

y+ e−A(x+) − y e−A(x) − B(x+) + B(x) = 0. (3.5)

Adding an invariant lattice equation, e.g.,

x+ − x = h (3.6)

we obtain an invariant difference scheme (3.5), (3.6). Not only does this system reduce to the
ODE (3.2) in the continuous limit, but equation (3.3) gives the exact general solution of the
discrete system (3.5), (3.6) (for any value of h).

Note that while equation (3.5) is linear in y, it is not the difference equation one would
get by the usual numerical discretization. To compare the two, let us reintroduce the discrete
variable n, putting x = xn, x+ = xn+1, y = yn, y+ = yn+1.

A ‘naive’ discretization would be
yn+1 − yn

xn+1 − xn

= A′(xn)yn + B ′(xn) eA(xn) (3.7)

or possibly

yn+1 − yn

xn+1 − xn

= A(xn+1) − A(xn)

xn+1 − xn

yn +
B(xn+1) − B(xn)

xn+1 − xn

eA(xn) (3.8)

with xn = nh in both cases. The system (3.5), (3.6), on the other hand, is rewritten as

yn+1 e−A(xn+1) − yn e−A(xn) − B(xn+1) + B(xn) = 0
(3.9)

xn+1 − xn = h.

All of the above discretizations coincide in the limit h → 0; however, only the
discretization (3.5), (3.6), i.e. (3.9), is exact in the sense that it has exactly the same general
solution (3.3) as the ODE (3.1).

Similar comments hold for all the discretizations that we present below in sections 4–9.
We shall not repeat them each time.

4. Separable equations

Let us consider the separable ODE

y ′ = f (x)g(y) (4.1)

and for convenience redefine f (x) ≡ A′(x), g(y) ≡ 1/Ḃ(y) (the prime is an x-derivative, the
dot a y-derivative). The (implicit) general solution of equation (4.1) is

B(y) = A(x) + k (4.2)

where k is a constant. The equation itself is rewritten as

y ′ = A′(x)

Ḃ(y)
. (4.3)
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Equation (4.3) has a two-dimensional symmetry group, generated by

X1 = 1

Ḃ(y)
∂y X2 = 1

A′(x)
∂x. (4.4)

The group invariants of the group generated by the algebra (4.4) in the discrete space are

I1 = A(x+) − A(x) I2 = B(y+) − B(y). (4.5)

Using I1 and I2, we write an invariant difference scheme as

B(y+) − B(y) − A(x+) + A(x) = 0 (4.6)

A(x+) − A(x) = ε(h) (4.7)

where ε is some constant, satisfying ε(h) → 0 for h → 0. Equation (4.2) clearly provides the
general solution of equation (4.6).

As a specific example, let us choose

B(y) = yM A(x) = xN .

The difference scheme

yM
+ − yM − xN

+ + xN = 0 (4.8)

xN
+ − xN = ε (4.9)

is solved by

y = (xN + k)1/M xn = (
nε + xN

0

)1/N
(4.10)

where we choose α > 0, x0 � 0. Clearly y(x) as in (4.10) also solves the ODE obtained in
the continuous limit, namely,

y ′ = NxN−1

MyM−1
. (4.11)

5. Exact equations

We will consider in this section exact equations, that is, equations of the form

y ′(x) = −A(x, y)

B(x, y)
i.e. A(x, y) dx + B(x, y) dy = 0 (5.1)

satisfying

Ay = Bx i.e. A(x, y) = Vx(x, y) B(x, y) = Vy(x, y) (5.2)

for some function V (x, y).
Equation (5.1) is invariant under a one-dimensional group generated by

X = B(x, y)∂x − A(x, y)∂y. (5.3)

The general solution of (5.1) is given implicitly by the relation

V (x, y) = k (5.4)

where k is an integration constant.
In the discrete case, equation (2.7) leads to the characteristic system

dx

Vy(x, y)
= − dy

Vx(x, y)
= dx+

Vy+(x+, y+)
= − dy+

Vx+(x+, y+)
(5.5)
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and hence to three invariants

I1 = V (x, y) I2 = V (x+, y+) (5.6)

I3 =
∫

dx+

Vy+(x+, y+(x+, I2))
−

∫
dx

Vy(x, y(x, I1))
. (5.7)

To obtain the integrals involved in I3, we have solved equations (5.6) for y and y+. The discrete
version of equation (5.1) is

V (x+, y+) − V (x, y) = 0 (5.8)

with (5.4) as its solution. Equation (5.7) can be used to define the invariant lattice.
As a specific example, consider the ODE

y ′ = 1

2(x + y)
− 1. (5.9)

It is exact and we have

V = (x + y)2 − x. (5.10)

The vector field (5.3) in this case is

X = 2(x + y)∂x − (2(x + y) − 1)∂y. (5.11)

The invariants in the discrete case are

I1 = (x + y)2 − x I2 = (x+ + y+)
2 − x+ I3 = x+ + y+ − x − y. (5.12)

The invariant difference scheme can be written as

(x+ + y+)
2 − (x + y)2 = x+ − x (5.13)

x+ + y+ − x − y = ε. (5.14)

Returning to the general case, we see that the discrete analogue of an exact ODE is
equation (5.8). The invariant lattice can be given by equation (5.7). In the continuous limit,
we have I3 → 0, i.e., x+ → x and (5.8) goes to

Vx + Vyyx = 0. (5.15)

6. Homogeneous equations

Let us consider the first-order ODE

y ′ = xk−1F
( y

xk

)
(6.1)

where F is an arbitrary smooth function and k is a real constant. This is the most general
first-order ODE invariant under the scaling group

ỹ = eλky x̃ = eλx (6.2)

generated by the vector field

X = x∂x + ky∂y. (6.3)

For convenience, we replace the function F(t) in equation (6.1) by F(t) = 1/Ḣ (t) + kt , so
equation (6.1) is rewritten as

y ′ = xk−1

Ḣ
(

y

xk

) + k
y

x
. (6.4)
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The change of variables (x, y(x)) → (t, z(t)) with

t = y

xk
z = log x x = ez y = t ekz (6.5)

will straighten out the vector field X and transform equation (6.1) into

zt = Ḣ (t). (6.6)

Solving equation (6.6) and returning to the original variables, we obtain the general solution
of equation (6.1) in the form

y(x) = xkH−1(log x − C) (6.7)

where C is an integration constant and H−1 is the function inverse to H(t).
Let us now find the invariant difference scheme corresponding to equation (6.1).

Prolonging the vector field X of equation (6.3) as in equation (2.1), we find three elementary
invariants

I1 = y

xk
I2 = y+

xk
+

I3 = x+

x
. (6.8)

Using them we write an invariant difference scheme as

log I3 − H(I2) + H(I1) = 0 (6.9)

I3 − 1 − ε = 0. (6.10)

More explicitly, we have

log x+ − log x − H

(
y+

xk
+

)
+ H

( y

xk

)
= 0 (6.11)

x+ − x − εx = 0 (6.12)

where ε is some constant. The ε → 0 limit of the difference scheme (6.11), (6.12) is the ODE
(6.4), as required, and its general solution is (6.7), together with

xn = (ε + 1)nx0. (6.13)

As in the previous examples, the invariant difference scheme has the same exact solution as
the original ODE.

As a specific example, we take k = 1 and the ODE

y ′ = x2 + y2

xy
. (6.14)

The difference scheme in this case is(
y+

x+

)2

−
(y

x

)2
= 2 log

x+

x

x+ − x

x
= ε. (6.15)

The solution of both (6.14) and (6.15) is

y = x
√

2 log x − C (6.16)

(together with (6.13) in the discrete case).
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7. Rotationally invariant equations

Let us consider a rotation in the (x, y) space. It is generated by

X = y∂x − x∂y. (7.1)

The most general first-order ODE invariant under these rotations is

y ′ = K(ρ)y − x

y + K(ρ)x
ρ =

√
x2 + y2. (7.2)

To solve equation (7.2), we straighten out the vector field (7.1) by going to polar coordinates
(x, y(x)) → (ρ, α(ρ))

x = ρ cos α y = ρ sin α. (7.3)

Equation (7.2) reduces to

αρ = − 1

ρK(ρ)
(7.4)

and we obtain

α(ρ) = −
∫

1

ρK(ρ)
dρ. (7.5)

For simplicity, let us restrict to the special case K(ρ) = K = constant. We then obtain
the solution of (7.2) as a logarithmic spiral

Kα + log ρ = log ρ0 (7.6)

or, in the original variables

1

2
log(x2 + y2) + K arctan

y

x
= log ρ0. (7.7)

Now let us consider the discrete case. The prolonged vector field is

pr X = y∂x − x∂y + y+∂x+ − x+∂y+ . (7.8)

This means that the pairs (x, y) and (x+, y+) will transform like vectors undergoing a rotation
in a Euclidean plane. We can form four invariants

I1 = x2 + y2 I2 = x2
+ + y2

+ I3 = xy+ − x+y I4 = xx+ + yy+ (7.9)

with one relation between them, namely,

I 2
3 + I 2

4 = I1I2. (7.10)

As an invariant difference scheme, we write

E1 = log
I2

I1
+ 2K arctan

I3

I4
= 0 (7.11)

E2 = 1
2 (I2 − I1) + KI3 = 0 (7.12)

with K being a constant. Using equation (2.2), we can check that the continuous limit of both
these expressions is the ODE (7.2) (with K constant). In general, we have∣∣∣∣∂(E1, E2)

∂(x+, y+)

∣∣∣∣
h �=0

�= 0 lim
h→0

∣∣∣∣∂(E1, E2)

∂(x+, y+)

∣∣∣∣ = 0. (7.13)

Expression (7.7), the exact solution of the ODE (7.2), is also an exact solution of the
system (7.11), (7.12).
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The situation is more transparent in polar coordinates (7.3). For K = constant, the ODE
is

dα

dρ
= − 1

Kρ
. (7.14)

The prolongation of the vector field corresponding to rotational invariance in the discrete case
is

pr X = ∂α + ∂α+ . (7.15)

The invariants are

I1 = α+ − α I2 = ρ+ I3 = ρ. (7.16)

An invariant difference scheme corresponding to the ODE (7.14) is

α+ − α = − 1

K
(log ρ+ − log ρ) (7.17)

ρ+ − ρ = ε. (7.18)

The exact solution of (7.14) and (7.17) is given by equation (7.6). The lattice determined by
equation (7.18) is uniform:

ρn = εn + ρ0. (7.19)

8. Invariant difference schemes on uniform lattices

Let us consider the ODE

y ′ = −Ax

Ay

+ f ′(x)
1

Ay

Ay �= 0 (8.1)

where A(x, y) and f (x) are some smooth functions. Equation (8.1) is invariant under
transformations generated by

X = 1

Ay(x, y)
∂y. (8.2)

As a matter of fact, any first-order ODE invariant under transformations generated by a vector
field of the form

X = φ(x, y)∂y (8.3)

can be reduced to the form (8.1).
The general solution of equation (8.1) can be written implicitly as

A(x, y) = f (x) + C. (8.4)

In the discrete case, the first prolongation of the vector field (8.2) has three invariants;
they can be chosen to be

I1 = x+ I2 = x I3 = A(x+, y+) − A(x, y). (8.5)

An invariant difference scheme on a uniform lattice, having the ODE as a continuous limit, is

A(x+, y+) − A(x, y) = f (x+) − f (x) (8.6)

x+ − x = h. (8.7)
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Its solution is given by equation (8.4) together with

xn = hn + x0. (8.8)

As a specific example, let us choose

X = xy∂y. (8.9)

The invariant ODE in this case is

y ′ = y

x
log y + q ′(x)xy. (8.10)

The corresponding difference scheme is

1

x+
log y+ − 1

x
log y − q(x+) + q(x) = 0 x+ − x = h. (8.11)

The solution of both (8.10) and (8.11) is

y = ex(C+q(x)) (8.12)

where C is an integration constant.
The vector field (8.2) is not the only one compatible with a uniform lattice. Another one

is

X = ∂x + φ(x, y)∂y (8.13)

for any function φ(x, y). As an example, let us take

X = ∂x + xayb∂y. (8.14)

The corresponding invariant first-order ODE is

y ′ = (k(ζ ) + xa)yb ζ = 1

a + 1
xa+1 +

1

b − 1
y−b+1 (8.15)

where k is any function of ζ . For k = k0 = constant. The solution of equation (8.15) is

y = (1 − b)
1

1−b

[
k0x +

1

a + 1
xa−1 + C

] 1
1−b

(8.16)

where C is an integration constant.
The invariants of the discrete prolongation of the vector field (8.14) are

I1 = x+ − x I2 = xa+1

a + 1
+

y−b+1

b − 1
I3 = xa+1

+

a + 1
+

y−b+1
+

b − 1
. (8.17)

We write an invariant difference scheme as

I2 − I3 − k0I1 = 0 I1 = h (8.18)

with k0 and h constant. More explicitly (8.18) is

1

1 − b

[
y1−b

+ − y1−b
] − 1

1 + a

[
xa+1

+ − xa+1
] − k0(x+ − x) = 0 (8.19)

x+ − x = h. (8.20)

The continuous limit of (8.19) is the ODE (8.15). Moreover, equation (8.16) is the exact
solution of (8.19) for any value of h (not just the limit h → 0).
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9. Invariant difference schemes on exponential lattices

The vector field (8.2) is also compatible with an invariant scheme of the form (8.6) on the
exponential lattice

x+ − x

x
= ε i.e. xn = (ε + 1)nx0 (9.1)

with ε = constant. Taking the limit ε → 0 we again obtain the ODE (8.1).
Another symmetry, leaving the lattice (9.1) invariant, is generated by the vector field

X = x∂x + φ(x, y)∂y (9.2)

with φ(x, y) arbitrary.
As an example, consider

X = x∂x + xayb∂y a �= 0 b �= 1. (9.3)

The corresponding invariant ODE is

y ′ = k(ζ )
1

x
yb + xa−1yb ζ = 1

a
xa +

1

b − 1
y1−b. (9.4)

For k = k0 constant, the solution is

y = (1 − b)
1

1−b

[
k0 log x +

xa

a
+ C

] 1
1−b

. (9.5)

In the discrete case, the prolongation of X has three invariants

I1 = x+

x
I2 = y1−b

b − 1
+

xa

a
I3 = y1−b

+

b − 1
+

xa
+

a
. (9.6)

An invariant scheme having (9.4) with k = k0 as its limit and (9.5) as its solution is

I2 − I3 − k0 log I1 = 0 I1 − 1 = ε (9.7)

i.e.,

y1−b
+

1 − b
− y1−b

1 − b
− xa

+

a
+

xa

a
− k0(log x+ − log x) = 0 (9.8)

x+ − x = εx+. (9.9)

10. Conclusions

Looking directly for symmetries of a difference scheme of the type (1.1) is not a particularly
fruitful enterprise. As in the case of first-order ODEs, one gets an underdetermined system of
equations. Infinitely many solutions exist, but there is no algorithm for finding them.

We have taken the complementary point of view. We have postulated the form of a vector
field, then found ODEs and difference schemes, invariant under the corresponding symmetry
group. The symmetry makes it possible to solve the ODE exactly analytically. The invariant
differential scheme then has the same solution. More precisely, the symmetry leads to a family
of difference schemes, one of which has solutions coinciding with those of its continuous limit
(the original ODE).

Essentially, we have constructed a partial ‘catalogue’ of exactly solvable two-point
schemes. This corresponds to a list of exactly solvable first-order ODEs: linear equations,
separable equations, exact equations, homogeneous equations, etc. The ‘complete list’ is
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infinite: for any chosen realization of a one- or two-dimensional Lie algebra, we can construct
an invariant ODE and an invariant difference scheme.

Without the symmetries to guide us, the obtained difference schemes are not obvious at
all. Starting from an ODE (1.6) and discretizing in a standard way, i.e., replacing the derivative
dy/dx by a discrete derivative and writing

yn+1 − yn

xn+1 − xn

= F(xn, yn) xn = hn + x0 (10.1)

we would lose virtually all symmetries. Moreover, the exact solution of equation (10.1) would
differ from that of the ODE (1.6) by terms of the order h. For our symmetry dictated difference
schemes, the exact solutions coincide with those of the ODEs. The main result of this paper
can be summed up as follows.

Theorem. For every first-order ODE there exists an invariant two-point difference scheme
with exactly the same general solution as the ODE.

Proof. Consider the ODE (1.6) and assume that we know its general solution in the form of a
first integral

h(x, y) = K hy �= 0. (10.2)

The general element (1.7) of the symmetry algebra of equation (1.6) must annihilate the
function h(x, y). The equation Xh = 0 implies that X has the form

X = ξ(x, y)

(
∂x − hx

hy

∂y

)
(10.3)

where ξ(x, y) is an arbitrary smooth function.
Let us now find the invariants of the group action induced by the vector field (10.3) in the

space (x, x+, y, y+). They are obtained by solving the characteristic system:

dx

ξ(x, y)
= dx+

ξ(x+, y+)
= hy(x, y) dy

−ξ(x, y)hx(x, y)
= hy+(x+, y+) dy+

−ξ(x+, y+)hx+(x+, y+)
. (10.4)

The invariants hence are

I1 = h(x, y) I2 = h(x+, y+)
(10.5)

I3 =
∫

dx

ξ(x, y(x, I1))
−

∫
dx+

ξ(x+, y+(x+, I2))

where the function ξ(x, y) can be freely chosen.
A difference scheme that has (10.2) as its general solution is

I1 = I2 I3 = c (c = constant). (10.6)

QED
Three comments are in order here.

1. The proof given above is not a constructive one. It assumes that we already know the
general solution (10.2) of the ODE. This was not assumed in the rest of this paper, where
we constructed the difference schemes using only one, or sometimes two elements of the
symmetry algebra of an ODE.

2. The arbitrariness in the function ξ(x, y) can be put to good use in the choice of lattices.
For instance, choosing ξ(x, y) = 1, we obtain a uniform lattice as in (8.8). Choosing
ξ = x, we obtain an exponential lattice as in equation (9.1).

3. The theorem and the results of this paper are specific to first-order ODEs and two-point
difference schemes.
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Let us compare with the case of second-order ODEs and three-point difference schemes.
S Lie classified all (complex) second-order ODEs into equivalence classes according to their
Lie point symmetries [13]. A similar classification of three-point difference schemes is much
more recent [11]. It was shown [12] that if a three-point difference scheme has a symmetry
group of dimension 3 (or larger) with at least a two-dimensional subalgebra of Lagrangian
symmetries, then the scheme can be integrated analytically. A crucial element in the integration
was the existence of a Lagrangian and the interpretation of the difference scheme as a discrete
analogue of an Euler–Lagrange equation [11, 12].

The fact that we obtain differential equations and difference schemes that have identical
symmetries and solutions has interesting implications. It suggests a certain duality between
continuous and discrete descriptions of physical phenomena. Thus, exactly the same physical
predictions may be described by some continuous curve, or by a series of points on this curve,
distributed with an arbitrary density.
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